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In this paper we consider the problem of determining the optimum target value of the quality charac-
teristic of interest and the screening limits for a correlated variable under single and two-stage screenings.
In single-stage screening, inspection is performed directly on the quality characteristic of interest or on
a variable that is correlated with the characteristic. In two-stage screening, the correlated variable is in-
spected first to decide if an item should be accepted, rejected, or whether additional observations should
be taken. If additional observations are required, the quality characteristic is then directly observed in order
to classify the undecided items. Models are constructed that involve selling and discounted prices as well
as production, inspection, and penalty costs for both single and two-stage screenings. Methods for finding
the optimum process mean and the screening limits are presented when the quality characteristic and the
correlated variable are assumed to be jointly normally distributed. A numerical example is presented.

Introduction

s a result of advances in automated manufactur-
A ing systems, sensoring technology, and auto-
matic inspection equipment, full inspections are in-
creasingly being used in industry to improve outgo-
ing product quality. Suppose that there is a lower
specification limit L for the quality characteristic ¥
of interest. All items are subjected to acceptance
inspection, and those with Y < L are reprocessed
or sold at a discounted price. Such quality charac-
teristics include filling weights and volumes. Items
produced by a production process may deviate from
the process mean because of variations in materials,
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labor, and operating conditions. The process mean
may be adjusted to a higher value in order to reduce
the proportion of the nonconforming items. Using a
higher process mean, however, may result in a higher
production cost. Therefore, a process parameter p
for the process mean is to be selected so that the
expected cost per item is minimized.

Several researchers have studied this problem.
Springer (1951) and Bettes (1962) consider a fill-
ing process where upper and lower specification lim-
its are given. The optimumn target value that mini-
mizes the reprocessing cost and the material costs for
overfilled and underfilled items is obtained. Golhar
(1987) studies a canning process in which underfilled
cans are emptied and refilled so that they can be sold
in the primary market. Boucher and Jafari (1991)
and Al-Sultan (1994) discuss situations in which the
items are subjected to lot-by-lot acceptance sampling
rather than complete inspections. Elsayed and Chen
(1993) determine optimum levels of process param-
eters for products with multiple characteristics, and
Arcelus and Rahim (1994) develop a model for simul-
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taneously selecting optimum target means for both
variable and attribute quality characteristics. Chen
and Chung (1996) cousider an economic model for
determining the most profitable target value and the
optimum inspection precision level for a production
process.

In all of these studies, inspection is performed di-
rectly on the quality characteristic Y of interest (the
performance variable). In some situations it is im-
possible, or not economical, to directly inspect the
quality characteristic Y. In such cases, the use of a
variable X that is highly correlated with Y is an at-
tractive alternative, especially when inspecting the
correlated variable is relatively less expensive than
obtaining Y. In a cement plant, for example, a per-
formance measure of interest may be the weight of
a cement bag, which is difficult to mcasure directly
due to the high-speed of the packing line. The mil-
ampere (mA) of the load cell is strongly correlated
with the weight of a cement bag and does not require
special effort to measure. Hence, it can be used as
the corrclated variable (Bai and Lee (1993)). The
problem of selecting the cutoff value of X has been
studied by many researchers. Bai and Lee (1993) and
Tang and Lo (1993) present economic models that
determine the process mean and the cutoff value of
X when inspection is based on X instead of Y in sit-
uations where items with Y > L are sold at a fixed
price and items with ¥ < L are scrapped or repro-
cessed. Hong et al. (1998) consider the problem of
jointly determining optimum target values in situa-
tions where there are several markets with diffcrent
price/cost structures. Recently, Linna and Woodall
(2001) study the effect of using the correlated vari-
able X in statistical process monitoring of Y.

In applications where quality assurance is critical,
the outgoing quality improvement may be more im-
portant than the reduction in the inspection cost.
Since a correlated variable is not perfectly correlated
with V', some conforming items may be rejected and
excluded from shipment while some nonconforming
items may be accepted for shipment. These decision
errors are likely to occur when the value of a corre-
lated variable is close to the screening limits. Conse-
quently, in this situation there may be an economic
advantage to reducing the errors by observing the
performance variable even though the inspection may
be expensive. Of course, this can only be done when
the inspection procedure of the performance variable
is not destructive. Based on this, Tang (1983) and
Bai et al. (1995) propose economic two-stage screen-
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ings where the correlated variable is used in the first
stage and the performance variable is used in the
second stage.

In this paper, we determine the optimum process
mean of the quality characteristic Y of interest and
the screening limits of a correlated variable under
single and two-stage screenings. In the single-stage
screening, inspection is based directly on the per-
formance measure or on a correlated variable. In
the two-stage screening, a correlated variable is in-
spected first to decide whether an item should be ac-
cepted, rejected, or whether additional observations
should be taken. If additional observations are re-
quired, then the performance variable is observed in
order to classify the unclassified items. The optimum
process mean and screening limits of the correlated
variable are jointly determined by maximizing the
profit function, which involves selling and discounted
prices as well as production, inspection, and penalty
costs.

Single-Stage Screening

In this section we present two models, denoted by
Models I and II, for the single-stage screening: in
Model 1, inspection is performed on the performance
variable Y; in Model II, inspection is performed on
the correlated variable X. Model I is based on Carls-
son (1984) with slight modification.

Model I: Inspection is Performed
Directly on Y

Let Y be a performance variable representing the
quality characteristic of interest, and let L be the
lower specification limit of Y. Suppose that Y is nor-
mally distributed with an unknown process mean g,
and known variance 0'5 We also assume that there
is no measurement error. All items are inspected
prior to shipment to determine whether they meet
the lower specification limit L on Y. Let a and r de-
note the selling and discounted prices, respectively,
where items with Y > L are sold at a fixed price a to
the primary market, and items with Y < L are sold
at a discounted price r(< a) to the secondary mar-
ket. The production cost per item is linearly related
to Y, that is, b+ cy where b and ¢ are constants. Let
¢y denote the performance inspection cost per item.
The profit function P(y; u,) = Ps,r per item is

_— b=cy =&y Y =1
Fag= {z'wb—('y-('y, Y < L. (1)

Similar profit functions are used by several au-
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thors. For example, if we let a = b, + (co —cq )L, 1 =
br-+(co—ca)L, b+cy = by, and ¢ = ¢y — ¢ = cp —¢,,
where by, bs, b, co, ¢, and ¢, are cost parameters
used in Carlsson (1984), the profit function given in
Equation (1) is the same as that in Carlsson (1984).
The optimum process mean py, is then

By =L —n"ay, (2)
where
" = —(—26n(v2mcay)/(a — 1))/

for v/2mco, < a —r. See Carlsson (1984) for the
detailed derivation.

Model II: Inspection is Performed on the
Correlated Variable X

Let X be a variable that is positively correlated
with Y. If X is negatively correlated with Y, we
then use —X as the screening variable rather than
X. We assume that, for given ¥ = y, X is nor-
mally distributed with mean A; + Aoy and variance
o2 where A\; and Ay are known constants. The con-
stant A is assumed to be positive so that X and Y
have a positive correlation. It can be easily shown
that (X,Y) follows a bivariate normal distribution
with mean vector (p, = A1 + Agpty, pty), covariance

matrix
Aol 4 0? poy\/A302 + 02
bl
/RS 2
poyy/ X505 + 0 a,

and correlation coefficient
p={No2 /(M50 + %)}/

(see Tang and Lo (1993)). Let X be the screening
limit on the decision variable X. If X > X, then
we conclude that Y > L, and the item is sold to the
primary market at a fixed price a. Since X is not
perfectly correlated with Y, some items with Y < L
may be sold to the primary market. An accepted
item with Y < L incurs the penalty cost d which in-
cludes the cost of identifying and handling the non-
conforming item, and the service and replacement
cost. If X < X, the item is sold at a discounted
price r(r < a < d). The production cost per item is
the same as in the previous model, and ¢, denotes
the inspection cost per item for X. Then, the profit
function per item is

a—b—cy—cyg, X=X Y > L,
PS’”:{a~b—cy—cx—d, X > &,Y <L,
r—b—cy—cg, Xk .
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The expected profit per item is given by

E(Ps.11) = / / R e
X

+ (a—b—cy—cy —d)g(z,y)dydr

—r

+

—— T\g L

(T —~= CcyYy — CI) g(x~ y)dyd$7

\88

|
2
[
3

3)

where g(z,y) is the joint density function of X and
Y. Using the relationships

oo L
//g(w-,y)dydx=‘1’(—6,n;—p), (4)
X

/ / o(@g)dyde = (=, —m0),  (5)
X L

where
WG —mip) + (=L, m —p) = (L),
Equation (3) can be rewritten as

E(Ps,11) = a®(—() + r®(¢) — d¥(—¢,m; —p)
=g — AL 10y,

where ¢ = (X — pig)/00, 1 = (L — py)/0oy, and ()
and V() are, respectively, the standard normal dis-
tribution function and standardized bivariate normal
distribution function with correlation coefficient p.
We will assume that n > 0; note that n < 0 if and
only if the proportion of defective items (Y < L)
is less than 50%. This condition is reasonable in
many production processes. Therefore, we are only
interested in maximizing the expected profit over the
domain {(n,¢) | n <0 and —o0 < { < oc}.

Using the relationships

GU=Cimp " " e Yy
TR (\/1_—[)2> o(—0),

O, P} ) I =i
T =-P (m> o(n),

the first derivatives of E(Pg 7) with respect to 7 and
¢ are

OE(Ps11) _ (—C +np

877 m) ¢(77) + caya
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OFE(Ps g1 ‘ e

—(ac_) = (r - a)9(¢) + d® (% 9(C),

where ¢(-) is the standard normal density function.
If E(Ps ;) is a unimodal function of n and ¢, then

the optimum values n* and (* are the values 7 and (

satisfying dF(Ps 11)/0n = 0 and OE(Ps 11)/0¢ = 0,

which give

Z (iﬁg) o) +co, =0 (6)

7 —y1—-p*®@ ' ((a—1)/d)
i s

g =

(7)

Let the left hand side of Equation (6) be vq(n).
Since the derivative of v1(n) is less than zero, then
v1(n) is a strictly decreasing function of n for n <
0. We have v1(0) = —d®(—¢*/+/1—p2)/V21 <
vi1(n) < coy = vi(—oc). This implies that, for
n < 0, Equation (6) has a unique solution. It is
difficult to show analytically that E(Ps ;) is a uni-
modal function of n and (. However, numerical
studies over a wide range [10 < a/(co,) < 100,
5 < r/(coy) < 50, 25 < df(coy) < 250, 0.6 < p <
0.99, r/(coy) < a/(coy,) < d/(coy)| of the parameter
values (r/(coy), a/(coy), d/(coy), p) indicate that
E(Ps 1) is a unimodal function of n and ¢ for n <0
and —oo < ( < oo; the domain of interest. The op-
timum values n* and ¢* can be obtained by solving
Equations (6) and (7) simultaneously, and a com-
putational approach such as Gauss-Siedel’s iterative
method can be used to obtain n* and ¢*. The opti-
mum process mean g is obtained from Equation (2)
and the screening limit X* of X from X™* = p,+(%0,.

Two-Stage Screening (Model III)

Since X is strongly but not perfectly correlated
with Y, decision errors of rejecting conforming items
or accepting nonconforming items may occur. To
reduce the number of these errors, we present a two-
stage screening procedure in which a correlated vari-
able X is used in the first stage and a performance
variable Y is used in the second stage. The two-stage
screening is as follows:

1%'stage: Take a measurement z on X for each in-
coming item. The item is (a) accepted if
z > wi, (b) unclassified if wy < z < wy,
and (c) rejected if < wo, where w; > wo.
ond gtage: Observe y on Y for the unclassified item
and (a) accept if y > L, and (b) reject if

y < L.
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Here, w; and wy are screening limits for X. Note
that there are no misclassification errors at the sec-
ond stage because all the unclassified items are in-
spected directly using the performance variable. In
this model, selling prices, discounted prices and pro-
duction cost are the same as in Model II. The profit
function P(x,y; pty, w1, w2) = Pr s

(a—b—cy—cy, X>w,Y>L
a—b—cy—c,—d, X>w,Y<L
a—b—cy—cr—c¢cy, ws<X<uwi,

Pr =« Y=L
r—b—ey—tr—ty rwy <X < wy,

Y<L

\r—b—cy — ¢y, X < ws.

The expected profit per item is then given by

E(PT‘H]) — CL‘I)(——(Sl)
+ a{¥(d1, —n; —p) — (02, —1m; —p)}
— d¥(—01,m; —p) + ¢y {2(52) — 2(61)}
+r{®(d1,m; p) + ¥(d2, —m; —p)}
= (b+e(L —noy)) — ca, (8)

where 0; = (w; — piz)/0s, i = 1,2. Note that ds < 4.
See Appendix A for the detailed derivation.

The optimum values 67, 63, and 7* can be ob-
tained by maximizing E(Prr;) over the domain
{(n,61,02) |1 <0, —00 < & < o0, and —oo < b2 <
oc}. Again, we restrict n < 0. For n < 0, extensive
numerical studies suggest that E(Ppr;;) is a uni-
modal function of 7, §;, and d5. The optimum values
n* and 07 satisfy the conditions OF(Pr rr)/0n = 0
and OFE(Pr11)/00; = 0, i = 1,2 as given by Equa-
tions (9)-(11):

dr(=67,1%) + (a — r){r (0], —n") — 7(d3, —")} = coy,

9)

6;{ o 7)* il e qu)*pl(Cy/(d P G,))’ (10)

T +V1-pP2  (ey/(a—1)) (11)
3 ;

where 7(d,7) = ®[(6 +np)//1 = p?]¢(n) . See Ap-
pendix B for the detailed derivations. Let the left
hand side of Equation (9) be va(n*). Sinced > a > r
and n* < 0, it is clear that

sty . (s=we ( #=n)
I b W “‘W(ﬁ) (ﬂ)
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IR E & —n'p o(n*)
4 >¢(¢)(¢)

— Eaya,

where v2(1*) is a strictly increasing function of * for
n* < 0. We then have va(—o0) = 0 < v2(n*) and

Therefore, Equations (9)-(11) have a unique solution

if
de [ =%
()

V2r
@) [cp( ff_pz)w( 6)}
V2r
2 COy.

In many practical production processes, Equation
(9) seems to be satisfied because d often far exceeds
coy. Under the assumption that Equation (9) is sat-
isfied, the optimum values n*, 67 and 45 can be ob-
tained by solving Equations (9)-(11) simultaneously,
and, as in Model II, a computational approach such
as Gauss-Siedel’s method can be used to obtain n*,
47, and 3. The optimum process mean i is ob-
tained using Equation (2), and the screening limits
w] and w3 of X are obtained by

w; = pg + 605, fori=1,2.

Numerical Example

In this section we present an example that orig-
inally appeared in Bai and Lee (1993) in order to
illustrate the optimum solution procedures. Numer-
ical studies are also performed to investigate the ef-
fects of o, p, and the cost parameters. IMSL (1987)
subroutines such as DNORIN, DNORDF, and DBN-
RDF are used to evaluate the inverse of the standard
normal distribution function and standard univariate
and bivariate normal distribution functions, respec-
tively.

Consider a cement factory packing plant. The
packing operation consists of two processes; a fill-
ing process and an inspection process. Each ce-
ment bag processed by the filling machine is moved

CCNQIOL

Lﬁll_,}u:.u}u Zy L—* I

to the loading and dispatching phases on a con-
veyor belt. Continuous weighing feeders (CWFs)
perform inspection. A CWF measures the mA (mil-
ampere) X of the load cell of the cement bag that
is positively correlated with the weight Y of the ce-
ment bag. From theoretical considerations and past
experience, it is known that the variance of Y is
o2 = (1.25kg)?, and that X for given Y = y is nor-
mally distributed with mean 4.040.08y and variance
(0.05mA)?. That is, X and Y are jointly normally
distributed, with unknown means (g, p,), known
variances o2 = (0.112mA)?, o2 = (1.25kg)?, and
correlation coefficient p = 0.894. The weight marked
on each bag is 40 kg, and it is the lower specifica-
tion limit. Suppose that the cost components are
a=83.0,r=$2.25, g = $0.1, ¢ = $0.06, ¢, = $0.04,
c; = $0.004, and d = $6.5.

For Model I, we obtain n* = —1.664 from Equa-
tion (2). Hence,

pt =L —1*0y = 40.0 — (—1.664 x 1.25)

= 42.079(kg)
and
E(Ps,1) = $0.299.
For Model II, we obtain n* = —2.305 and (* =

—2.003 from Equations (6) and (7). Therefore the
optimum process mean and screening limit for X are

u; =L —n%0y =40.0 — (—2.305 x 1.25)
= 42.882(kg)
X' = pp + (Fop = 4.0+ (0.08 x 42.882)
+ (—2.003 x 0.112)
= 7.206(mA)
and
E(Ps ;1) = $0.290.

For Model III, we obtain n* = —1.787, ;7 = —0.782,
and 65 = —2.807 from Equations (9)-(11). Therefore
the optimum process mean and screening limits for
X are
wy =L —n*c, =40.0 — (—1.787 x 1.25)
= 42.234(kg)
W} = g + 6o, = 4.0 4+ (0.08 x 42.234)
+ (—0.782 x 0.112)
=7.291(mA)
Wi = s + 6305 = 4.0 4+ (0.08 x 42.234)
+ (—2.807 x 0.112)
= 7.064(mA)
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FIGURE 1. Percentage Decrease of Expected Profits for
Model I11.

and
E(Pr11) = $0.3235.

These results agree with our intuition that the ex-
pected profit for the two-stage screening is higher
than the single-stage screenings. However, two-stage
screening is somewhat complex to implement. Since
a correlated variable is not perfectly correlated with
the performance variable, classification errors may
occur in Models IT and III. Therefore, in applications
where quality assurance is critical, Model I is more
suitable. In some cases, it is impossible or not eco-
nomical to directly inspect the performance variable.
In these situations, Model II can be effectively used.
We also conducted numerical studies to investigate
the effects of the parameters ( p, 0y, a, ¢, d, and 7).

Effects of Using Improper Cost Factors

It is sometimes difficult to obtain accurate esti-
mates of penalty and production costs. If incorrect
values for these parameters are used to determine
the optimum target values, the calculated expected
profit is expected to be smaller than the expected
profit with true values. To study the sensitivity of
Model III to cost parameters, the percentage de-
crease (PD) is given in Figure 1 for selected values
of a, ¢, d, and r with remaining parameters fixed as
given in our example. The PD is defined as

E(Prr)* — E(Pr )
E(Pr 111)*

where E(Prrrr)* and E(Prir)’ are the expected
profit obtained by using the true and incorrect cost
parameters, respectively. In Figure 1, the negative
and positive values on the horizontal axis denote un-
derestimated and overestimated values of cost pa-
rameters, respectively. Figure 1 indicates that Model

PD =

x 100(%),

Vol. 33, No. 4, October 2001
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FIGURE 2. Expected Profit as a Function of .

III is very robust to changes in cost parameters ex-
cept for underestimated values of a and overesti-
mated values of r. It also suggests that similar results
can be obtained for Model II, and Model 1 is robust
to changes in cost parameters except for incorrectly
estimated values of a and overestimated values of r.

Effect of oy

E(Psr1), E(Psyr), and E(Pr 1) for the above
example are shown in Figures 2 and 3 for selected
values of the standard deviation of Y from 0.20, to
2.00,, where o, equals 1.25kg. Figure 2 shows that
the expected profits decrease as the standard devia-
tion of Y increases. The computational results agree
with our intuition that expected profit E(Pr rrr) for
the two-stage screening is somewhat higher than that
of the single-stage screening. E(Pg ) is larger than
E(Ps,p) if the standard deviation of Y is small, but
E(Pg,rr) is smaller than E(Pg ;) if the standard de-
viation of Y is large. Figure 3 indicates that p; tends
to increase as the standard deviation of Y increases.

45

44.5
44
43.5

43

u'y 42.5
42 1

| ——Model I
—#—Model II
—& —f&—Model III

CEI o R A ! R

41 1
40.5
40

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 . g =1.25 Kg)
: O,=1.

l

FIGURE 3. Optimal Process Mean as a Function of 7.
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TABLE 1. Effects of p and o on the optimal Process Mean, Screening Limits, and Expected Cost.

Models Model II Model IIT
P o Iy A E(Ps,r1) By wi w3 E(Pr 1)
0.65 0.085 43.237 7.163 0.275 42.328 7.383 6.854 0.308
0.675 0.083 43.221 7.171 0.275 42.324 7.374 6.880 0.309
0.70 0.080 43.202 7.178 0.276 42.320 7.366 6.904 0.311
0.725 0.077 43.180 7.184 0.277 42.315 7.387 6.927 0.312
0.75 0.074 43.153 7.189 0.278 42.308 7.349 6.950 0.314
0.775 0.071 43.122 7.194 0.279 42.298 7.340 6.971 0.315
0.80 0.067 43.086 7.198 0.281 42.288 7.331 6.991 0.317
0.825 0.063 43.044 7.201 0.283 42.275 7.321 7.011 0.319
0.85 0.059 42.993 7.204 0.285 42.263 7.311 7.031 0.320
0.875 0.054 42.934 7.206 0.288 42.248 7.300 7.050 0.322
0.90 0.049 42.864 7.206 0.291 42.230 7.288 7.069 0.324
0.925 0.043 42777 7.206 0.296 42.210 7274 7.089 0.326
0.95 0.035 42.664 7.204 0.302 42.185 7.258 7.109 0.328
0.975 0.025 42.513 7.199 0.310 42.153 7.236 7133 0.330
Effect of p inspection cost, from 0.02 to 0.07. The computa-

tional results agree with our intuition that the in-
spection proportion in stage 2 tends to decrease as
¢y increases.

The expected profit per item and the optimum
process mean and the screening limits on X are given
in Table 1 and Figure 4 for selected values of p from
0.650 to 0.975. Table 1 shows that E(Pg ;) and

E(PT’UI) increase as p increases. As p increases,
the values y; and 607 tend to decrease and the values
of X* and 65 tend to increase. The value E(Pr 1)
is greater than E(Pg r7) and the differences between
E(Pr 1) and E(Ps ;) tend to decrease as p in-
creases; these computational results agree with our
expectations.

Concluding Remarks

We have considered economic selections of the op-
timum mean value of the quality characteristic and
the screening limits for a correlated variable under
single and two-stage screenings. Models I and II for
single-stage screening and Model IIT for two-stage
screening are constructed under the assumption that
the quality characteristic and the correlated variable

Effect of ¢y
The inspection proportion in stage 2 is given in
s 0.29
Figure 5 for selected values of c,, the performance N ! ’
027 \ , iKY
o ~ . ~ 025 N —p
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FIGURE 4. Expected Profit as a Function of p.
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are jointly normally distributed. The optimum pro-
cess mean and screening limits are jointly obtained
by maximizing the expected profit function, which
includes the selling and discounted prices, in addition
to the production, inspection, and penalty costs. For
Model I, a closed form solution is obtained. For Mod-
els II and III the solutions are shown to be unique
under the reasonable assumption that the propor-
tion of defective items is less than 50%. However,
closed form expressions for the optimum values are
not obtained, and a numerical search algorithm such
as Gauss-Siedel’s iterative method is used. Numeri-
cal results show that the expected profit is more sen-
sitive to selling and discounted prices than other cost
parameters, and they show that the models are ro-
bust to changes in the cost parameters except for
underestimated and overestimated values of selling
and discounted prices. Expected profit decreases as
the standard deviation of Y increases, and the pro-
cess mean and screening limits on the correlated vari-
able tend to increase as the standard deviation of
Y increases. The expected profit for the two-stage
screening procedure is somewhat greater than that
of the single-stage screening procedures. As antic-
ipated, the expected profits for Models 1T and III
increase as p increases.

Appendix A: Derivation
of Equation (8)

The expected profit per item is given by

E(Pr ) = // a—b— cy — c;)g(z, y)dydz

w1
oo

o

w1

—cy — ¢z — d)g(x,y)dydx

—b—cy—cy —cy)g(x,y)dydzx

s
&
i

(r—b—cy—cy — cy)g(x,y)dydx
wy —00
+ / / (r—>b—cy—cg)g(z,y)dydz.
= (A1)

Using Equations (4) and (5) and the relationships

w1 L
//9@@@M=Wk&mrm—WF&%—m

wy —00
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w1 o0

//g(m,y)dydﬂv = W(—02, —n; p) — ¥ (=61, —7; p),

w2 L
Equation (A.1) can be rewritten as Equation (8).

Appendix B: Model III Derivations

The first derivatives of F(Pr rr;) with respect to
n and §;, i = 1,2 are

QE(Pr) _

1— p?
0

— dd ( S 77,0) &(—=1n) + coy, (B1)
1— p?

06, 1—p?
— ¢y ®(61), (B2)
and
OE(Prom) _ (. e[ 27t %p
+ ¢y d(02). (B3)

Setting Equations (B1)-(B3) to zero, we obtain
Equations (9)-(11). The second partial derivatives
of E(Pr 1) with respect to 7 and d;, ¢ = 1,2 at
(n*,61,05) are

O?E(Pr.11) _ 6 —n*p\ o(=n")
—TTIQ——(T_a)P‘?/’(\/l—_—pg 1-p2
’ ﬂé* * *
— (d+7—a)ps ( \/ll—t%p) ¢1(n_)pz
+ coyn’”,

OPE(Pryrr)

g e [ T 8ip ) _#(éD)

32E(PT’U[) :( —Q)pd) —-n* +52P ¢(6;)
355 V1 — p? V1 — p?
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O?E(Pr 1) _ O*E(Pr 1)
ondd, 0610n
n*—d8ip\ ¢(d7)

Wl of ) yflmi?

=(d+r—a)p

O*E(Prp11) - O?E(Pr111)

andds 9d20n
—fp = i TR
= ) Vi-7
O?E(Pr.11)  0°E(Prrr) —0
06,00, 06,06, i

Let H? and H? denote the matrix of second
order partial derivatives evaluated at (n*,d7) and
(n*,07,05), respectively. Since d > a > r, it is
clear that ({)2E(PT’][])/07]2 <0, OQE(PT[[[)/()(SIZ <L
0, O?E(Pr11)/062 < 0, and det(H?) > 0 for
n* < 0. It is difficult to show analytically that
det(H®) < 0. However, extensive numerical stud-
ies over a wide range [10 < a/(co,) < 100, 5 <
r/(coy) < 50, 25 < df(coy) < 250, 0.6 < p <
0.99, and r/(coy) < af(coy) < d/(coy)] of pa-
rameter values (r/(coy),a/(coy),d/(coy), p) indicate
that det(H?) < 0, suggesting that, over this range,
the Hessian matrix is negative definite and that
E(Pr rr) is a unimodal function of ny and 6§;, i = 1, 2,
for n < 0. Therefore, (n*,07,03) represents a maxi-
mum point of F(Pr rr;) over a wide range of param-
eter values.
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